In internal combustion engines, water injection, also known as anti-detonant injection, is spraying water into the cylinder or incoming fuel-air mixture to cool the combustion chambers of the engine, allowing for greater compression ratios and largely eliminating the problem of engine knocking (detonation). This effectively increases the octane rating of the fuel, meaning that performance gains can be obtained when used in conjunction with a supercharger, turbocharger, altered spark ignition timing, and other modifications. Increasing the octane rating allows for a higher compression ratio which increases the power output and efficiency of the engine. Depending on the engine, improvements in power and fuel efficiency can also be obtained solely by injecting water. Water injection may also be used to reduce NOx or carbon monoxide emissions.
Water injection is also used in some jet turbine engines and in some shaft turbine engines, when a momentary high-thrust setting is needed to increase power and fuel efficiency.
Many water injection systems use a mixture of water and alcohol (approximately 50/50), with trace amounts of water-soluble oil. The water provides the primary cooling effect due to its great density and high heat absorption properties. The alcohol is combustible, and also serves as an antifreeze for the water. The purpose of the oil is to prevent corrosion of water injection and fuel system components. Because the alcohol mixed into the injection solution is often methanol (CH3OH), the system is known as methanol-water injection, or MW50. In the United States, the system is commonly referred to as anti-detonant injection, or ADI.
In a piston engine, the initial injection of water cools the fuel-air mixture significantly, which increases its density and hence the amount of mixture that enters the cylinder. The water (if in small liquid droplets) may absorb heat (and lower the pressure) as the charge is compressed, thus reducing compression work.[1] An additional effect comes later during combustion when the water absorbs large amounts of heat as it vaporizes, reducing peak temperature and resultant NOx formation, and reducing the amount of heat energy absorbed into the cylinder walls. This also converts part of combustion energy from the form of heat to the form of pressure. As the water droplets vaporize by absorbing heat, it turns to high pressure steam (water vapor or steam mainly resulted from combustion chemical reaction). The alcohol in the mixture burns, but is also much more resistant to detonation than gasoline. The net result is a higher octane charge that will support very high compression ratios or significant forced induction pressures before onset of detonation.