## Basic aero questions

All that has to do with the power train, gearbox, clutch, fuels and lubricants, etc. Generally the mechanical side of Formula One.
MarkBolton
MarkBolton
0
Joined: Mon Nov 16, 2020 2:32 pm

### Basic aero questions

Hi,

Regarding induced drag, I understand where it comes from-the horizontal element of the resultant lifting force due to the rear facing lift vector.

But what is this 'horizontal' element in relation to? The ground, mean chord line or the direction of travel?

What is the correct term for this plane?

Is it possible to have a 3D lifting aero shape (not something symmetrical) in which all the lift is perpendicular to the 'horizontal' plane, so that there is no induced drag?

Thank you,

gruntguru
gruntguru
548
Joined: Sat Feb 21, 2009 6:43 am

### Re: Basic aero questions

MarkBolton wrote:
Mon Nov 16, 2020 2:46 pm
Hi,

Regarding induced drag, I understand where it comes from-the horizontal element of the resultant lifting force due to the rear facing lift vector.

But what is this 'horizontal' element in relation to? The ground, mean chord line or the direction of travel?

What is the correct term for this plane?

Is it possible to have a 3D lifting aero shape (not something symmetrical) in which all the lift is perpendicular to the 'horizontal' plane, so that there is no induced drag?

Thank you,
You know there is an aero forum here? https://www.f1technical.net/forum/viewforum.php?f=6
je suis charlie

godlameroso
305
Joined: Sat Jan 16, 2010 8:27 pm
Location: Miami FL

### Re: Basic aero questions

MarkBolton wrote:
Mon Nov 16, 2020 2:46 pm
Hi,

Regarding induced drag, I understand where it comes from-the horizontal element of the resultant lifting force due to the rear facing lift vector.

But what is this 'horizontal' element in relation to? The ground, mean chord line or the direction of travel?

What is the correct term for this plane?

Is it possible to have a 3D lifting aero shape (not something symmetrical) in which all the lift is perpendicular to the 'horizontal' plane, so that there is no induced drag?

Thank you,
Turning the air requires energy, the manifestation of that energy conversion is drag. You cannot eliminate drag if the shape creates a pressure differential as it cuts across the air, you can minimize extra drag only, never zero drag. Only way to have no induced drag is to not have bodywork in the path of the air.

"Is it possible to have a 3D lifting aero shape (not something symmetrical) in which all the lift is perpendicular to the 'horizontal' plane, so that there is no induced drag?"

Yes to the former, no to the latter. It only matters which way the air is flowing on the trailing edge that determines the force vector on the surface.

Look at the bargeboards, they're a perfect example of this. The airflow hits it dead on, but is pushed out and up, so the force vector is still towards the ground. You can see the way the floor flicks up aft of the side pod undercut, to understand where the force vector of the bargeboards is.

The air flows freely under the bargeboards, while over them, the air turns out and up, which slows it down increasing its pressure which comes to a head when that air interacts with the sidepod undercut.
Saishū kōnā

Just_a_fan
Just_a_fan
561
Joined: Sun Jan 31, 2010 7:37 pm

### Re: Basic aero questions

If you generate "lift" then you generate induced drag.
Turbo says "Dumpster sounds so much more classy. It's the diamond of the cesspools." oh, and "The Dutch fans are drunk. Maybe"